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Abstract 
 
 I implemented a probabilistic Artificial Intelligence and used it to 
create an opponent for a simplistic but randomized Hide and Go Seek 2D 
grid based game in JavaScript as an example of probabilistic reasoning 
in an unknown environment. The goal was to demonstrate probabilistic 
reasoning in stealth-based games where the omniscience of normal AI is 
a detriment to exciting gameplay. This should be useful for realistic 
stealth games and games like Hide and go Seek, where the programmer 
may not want to program in where to check manually, or where the level 
changes over time or wants to have a unique map each time. Hopefully 
the AI will also be a more realistically human opponent, and be harder to 
trick or exploit during gameplay. 

 
Introduction 
 
 Most modern adversarial games use Artificial Intelligence to 
simulate human antagonists, allowing for rich gameplay against 
challenging opponents. These AI are usually given an unfair advantage; 
knowing everything about the map and player position. While this can 
lead to fun and challenging opponents, the issues with this approach 
become prevalent in stealth based games, where the AI’s near 
omniscience can quickly become frustrating and make the game 
unplayable. 
 
 The solution can be found in limiting the AI’s information about the 
world, restricting their view and conceivable actions to something more 
human-like. The problem then becomes how can an AI reason about a 



world it cannot fully see? Many of today’s enemy searching algorithms 
choose to utilize a fixed map and give the AI a list of places to search, 
which can be a fine implementation, but this approach cannot account 
for a changing environment or unexpected player behavior; if the player 
can find a hiding spot the AI will never even think of checking, that is a 
major problem. Another approach is to have the AI search the player’s 
last known position, but this method does not help the AI act in a 
human-like manner if it does not even try to persist in searching other 
areas. This old method is rather inflexible and has trouble accounting for 
enemies moving while hidden from view. 
 
 This paper seeks to propose using a probability distribution map of 
the player’s likely position as the basis for AI in any stealth-like game. 
This will ideally allow for greater flexibility in hiding spaces for players 
and a more human-like approach to searching for the player because the 
AI’s omniscience is removed, and is dependent only on its field of vision. 
The key here is that this probability map of the world is built up over 
time as the AI receives information about the world, allowing it to build 
something it can then reason on. 

 
Background 
  
 There are not terribly many in production games that would focus 
on this aspect of gameplay; stealth based games are usually cater to a 
patient niche of players looking more for the euphoria of winning without 
alerting a single guard. While most stealth games use AI characters as 
antagonists, I do not know of any utilizing probability to track player 
position while the player is unobserved. There are games that simulate it; 
the Thief franchise uses visual and auditory ‘senses’ to give information 
to their AI, specifically view cones that let the AI ‘see’ the world around 
them, providing information to act on. The AI in Tom Clancy’s Splinter 
Cell, Conviction, utilizes the player’s last known position but does not try 
to figure out where the player has gone beyond that based on probability.  

 
 



Problem 

 
 Because the AI needs to be segregated from the world for this 
approach, there are four main problems to overcome: AI field of vision, 
exploring the map, player prediction propagation, and AI path 
determination. Combining the solutions for all three should make for an 
AI that can explore an unknown space while looking for a moving enemy. 
Interestingly, the player prediction map does not need to be continuously 
updated, as it is useless when the player hasn’t been seen before, or is 
currently observed. 
  
 The AI should act differently based on what it has observed, leading 
to 3 general states: Exploration, Pursuit, and Predictive Tracking. 
Exploration is the default state, consisting of the AI determining the 
closest unknown location on its probability map and trying to path there 
using A*. Pursuit is the state wherein the AI can actively see the player in 
its field of vision. In this state, A* is used to path from the AI’s position to 
the player’s position. Predictive Tracking is when the player has been 
seen, but is currently not in the AI’s field of vision. This state uses the 
map built up in the other states to reason about where the player might 
have gone. Because the AI doesn’t have a complete map of the world, it 
has to assume all unknown grid positions are freely movable spaces with 
regards for estimating where the player can travel until it can update it’s 
understanding of that space. 

 
Implementation 

 
1. Field of Vision 
 
 The first step is determining what the AI can see of the world. The 
easiest way to do so is with a cone of vision, consisting of a multitude of 
rays extending out from the AI with a starting and ending angle that 
terminate once some maximum length or a wall is reached. These rays 
are generated using the Bresenham Line Algorithm, modified to return a 
list of tuples containing a map position and whether that position is a 



wall or a space. These lists are combined in a unique union, meaning the 
combined field or rays will only contain one of each position, even if 
multiple rays trace it. 
 

2. Map Exploration 
 
 Map Exploration is simply done by determining where the closest 
void position is and setting the AI to path to that position. This is done 
by making a list of all positions adjacent to free space nodes that are not 
yet known by the AI, then iterating over all of those to find the one 
closest to the AI. Because this is a cheap calculation, it can be done 
repeatedly very easily. When combined with actively orienting the field of 
vision to that spot, the AI often never has to actually reach that spot 
before moving onto the next one.  
 
 A video of the AI exploring the space can be found here. Notice how 
in the first run, there is a point at which the A* pathing takes a long 
backwards ‘C’ shaped route to an unknown location. This bug, explained 
later stems from the A* library’s inability to path to a previously visited 
location. 
 

3. Predictive Mapping 
 
 Once sight of the player has been lost, the AI needs to be able to 
reason about where the player has gone. Since the AI cannot know how 
the player moved to evade the field of vision, the player’s last known 
position on the probability density map is set to 1, and the rest of the 
map is set to 0. We do this because we know exactly where the player 
was, he cannot be anywhere else. Immediately after, the probabilities 
across the map are propagated once to simulate the player’s move to this 
frame. The AI then uses A* to determine the best path to the highest 
probability on the probability map. 
 
 Probability propagation is done in an interesting manner; instead of 
polling the adjacent nodes to update a node, the node updates its 
adjacent nodes and itself based on the current probability of the player 



being in either position, and the probability of the player moving to that 
node using a discrete sum: 
 

𝑃 𝑋 =   Σ!(𝑃 𝑋! ∗ 𝑃 𝑋! → 𝑋 ) 
 

 Where 𝑋 is the probability that the player is at a specific map 
position, 𝑋! is all adjacent positions including 𝑋, and 𝑃(𝑋! → 𝑋) is the 
probability of the player moving from 𝑋! to 𝑋 based on the number of 
available movement options. Belief propagation is done this way to 
preserve the net probability of the map and because the probabilities are 
propagated from the nodes rather than to them, allows the AI to set 
probabilities to nodes it has not yet seen. This allows the AI to reason on 
unknown nodes, which can be updated later with their actual values. 
  
 Consider the following example where the AI has spotted the player 
(fig 1), but by the next frame, the player has moved out of the AI’s line of 
vision (fig 2). 
 

 
Figure 1 

 
 The AI is the red square; the player is the green square. The AI’s 
line of vision is white and currently includes the player’s square. There is 
a wall to the left of the player. 
 

    
Figure 2 



 
 The player has moved out of the AI’s cone of vision. Notice how the 
AI can see neither the player nor the wall, because of its limited cone of 
vision. 
 

    
Figure 3 

 
 Because the AI has no idea which direction the player went, nor 
any idea about the space currently outside its cone of vision, it must 
reason the player has moved to one of the three positions adjacent to the 
player’s last known position (fig 3). In this case it decides to check the 
rightmost location using the yellow path. 
 

    
Figure 4 

 
 One frame later, the player probability map has been propagated, 
and the AI has updated it with the fact that there is a wall where it 
originally thought there was a player. Notice how the player is not in one 
of the two spots of high probability; this method is not and shouldn’t be 
an infallible approach. The ideal is giving a general sense of the player’s 
location with which the AI can check. 

 
 
 



4. AI Movement 

 
 While pathing through the known states was a relatively simple 
implementation of A*, The AI also had to guess how it could find a path 
through a partially unknown map, due to differences in how the field of 
view ray casting and the A* pathing algorithm worked. An example is 
shown below in Figure 5. 
 

 
Figure 5 

 
 Here the AI’s vision cone (in white) can see the player diagonally 
through the missing corner, but there exists no path through the known 
states (also in white) to the player’s position. The solution to this problem 
is to have the AI guess that all unknown nodes are empty space until it 
can observe otherwise and can update its assumptions. 

 

 
Figure 6 

 
 Figure 6 shows two possible paths to the player’s position using a 
permissive known states map. If the AI chooses the lower path, it will 
eventually see the wall blocking that route and choose the other path. 

 
 
 



Results 

 
 The game can be played here. The AI tries to fully explore the map 
and does a decently good job of following the player once seen. It can be 
fooled, and there are some problems in its predictive mapping. The game 
runs very quickly and does not appear to use much processing power. 
The FPS was limited to 5 to make it easier for players to look at the map 
and determine what to do. Because to the AI’s decision making and per-
frame movement speed, the player’s best bet is to find a blind spots to 
hide in or hope the AI gets stuck somewhere. 
 
 Probability propagation could use some work, however. It tends to 
stay very low for the most part after a few propagations, but some very 
odd high spots occur after a long time of propagation. It does do a 
decently good job predicting player movements within the first few 
propagations however.  

 
Issues 

 
 The AI can occasionally become stuck once it believes it has 
explored the entire map and not found the player anywhere, as there is 
no way for it to realize it needs to recheck the map, yet. The library used 
for the A* search sometimes cannot determine the optimal path back to a 
previous state, leading to amusing situations where the AI is aware of the 
player but cannot determine a path to the player’s location. Finally, there 
are also sometimes occurrences of the AI getting stuck on trying to path 
through walls after it has seen the player. I believe this is due to it not 
correctly accounting for some walls once it sees them.  
 
 Due to time limitations, I was unable to implement my own version 
of A*, and while the library I found was useful, it has several limitations, 
namely being constrained to a 2D grid meaning the AI is currently 
confined to a grid type of map, and the aforementioned issue with return 
pathing.  
 



 The probability propagation can sometimes lead to weird results if 
the AI gets stuck and left to propagate for a long time. The fix for this 
might be a limit on how long the probability map is allowed to propagate 
after the AI loses sight of the player. It might also be because the AI 
currently might not be correctly updating the grid used for pathing 
through the space. Constructing a probability density function might 
work, but would require compensating somehow for walls. 
 
 The cone of vision has some holes in it depending on the resolution 
it is set to, and is non-optimal due to the fact that often several rays will 
trace the same grid square.  

 
Future Work 
 
 Designing the probability map to be a hidden layer under a less 
restrained visualization of the game would be ideal, allowing for more 
movement options and game display styles than the 2D grid world allows. 
In addition, I would like to implement my own A* search algorithm that 
does not involve a base grid, allowing for a more freeform map than 
currently used. 
 
 Combining multiple AI to search together might be an interesting 
problem, seeing whether separate or shared probability distribution 
maps contribute to better decision-making or emergent behavior.  
 
 The probability distribution map does not need to be as exact as I 
first thought; some function that averages the player’s probability 
between two adjacent nodes might make for a better looking probability 
distribution and might alleviate the problem with weird high-spots. 

 
Conclusions 

 
 A probability distribution map does a good job of predicting player 
position in a known environment. However it tends to fail to produce 



anything meaningful after a large amount of propagations, as the 
chances of finding the player after a certain point is simply too low.  
  
 Interacting with the cone of vision leads to interesting gameplay, 
and the ability of the AI to reason on the player’s probable location 
makes trying to fool it exciting and a moderately hard challenge. It can 
easily follow me into a blind corner, for example.  
 
 There is some interesting emergent behavior on the initialization of 
the game; the AI starts out by first looking in all 4 directions, as those 
are the closest unknown nodes as it starts exploring.  
 
 The base AI should scale relatively well for larger maps, most 
calculations are done in O(n), where n is the number of known map 
locations. This should prove useful to anyone wishing to use this as a 
logic layer for a more graphically complex game.    
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